تحلیل فراوانی توام دبی-دبی رسوب مبتنی بر مفصل در زیرحوضه قلعه شاهرخ زاینده رود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر پسادکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

2 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

10.22034/arwe.2024.709854

چکیده

رابطه دبی-بار معلق رسوب در حوضه­های آبریز با توجه به آورد رودخانه­ها و تغییرات طبیعی و غیرطبیعی منجر به ارائه رابطه دقیق نمی­شود، لذا نیاز است از روش­های جدید برای توسعه این بخش استفاده کرد. روش­های چند متغیره و شبیه­سازی و مدل­سازی مبتنی بر توابع مفصل به دلیل درنظر گرفتن توزیع داده­ها می­تواند در این خصوص مورد توجه قرار گیرد. در این مطالعه جهت شبیه­سازی و تحلیل فراوانی توام دبی-بار معلق رسوب و برآورد احتمالات شرطی در زیرحوضه قلعه شاهرخ، حوضه آبریز سد زاینده­رود از توابع مفصل دو بعدی در دوره آماری 2019-2010 استفاده شد. ضمن بررسی وابستگی جفت متغیر مورد مطالعه و انتخاب توزیع­های حاشیه­ای متناسب، مفصل فرانک با توجه به مقادیر RMSE و NSE به عنوان مفصل برتر در تحلیل فراوانی توام جفت متغیر دبی-بار معلق رسوب انتخاب شد. با استفاده از پارامترهای منتخب اقدام به شبیه­سازی توام جفت متغیر دبی-بار معلق رسوب با احتمالات بیش از 80 درصد در ایستگاه منتخب شد به طوری که با احتمالات بیش از 80 درصد می­توان مقادیر بار معلق رسوب را به شرط وقوع دبی جریان در ایستگاه تخمین زد. در نهایت با احتمالات 95-90 و 99-95 درصد روابط پیش­بینی بار معلق رسوب به شرط وقوع دبی جریان در منطقه مورد مطالعه پیشنهاد گردید که به ترتیب کارایی 84 و 82 درصد را با توجه به آماره نش-ساتکلیف را ارائه کرد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Joint Frequency Analysis of River Flow-Suspended Sediment Load Based on Copula Functions in the Zayanderood Sub-Basin

نویسندگان [English]

  • Mohammad Nazeri Tahroudi 1
  • Rasoul Mirabbasi 2
1 Postdoctoral Researcher, Department of Water Engineering, Shahrekord University, Shahrekord, Iran.
2 Associate Professor, Department of Water Engineering, Shahrekord University, Shahrekord, Iran
چکیده [English]

The river flow-suspended sediment load relationship in basins due to the rivers flow and natural and unnatural changes does not lead to providing an accurate relationship, so it is necessary to use new methods for the development of this sector. Multivariate methods and simulation and modeling based on copula functions can be considered in this regard due to the consideration of data distribution. In this study, two-dimensional copula functions were used in the period of 2010-2019 in order to simulate and joint frequency analysis of river flow-suspended sediment load and estimate the conditional probabilities in the sub-basin of Qale-Shahrokh, Zayanderood Dam basin. While examining the dependence of the studied pair-variable and choosing appropriate marginal distributions, Frank's copula was selected as the best copula in joint frequency analysis of the pair-variable of discharge-suspended sediment load according to the RMSE and NSE values. By using the selected parameters, the simulation of the studied pair-variable of river flow-suspended sediment load with the probability of more than 80% was carried out in the selected station. So that with a probability of more than 80%, it is possible to estimate the amount of suspended sediment load given by the river flow in studied station. Finally, with the probabilities of 90-95% and 95-99%, it was suggested that the equation of forecasting suspended sediment load given by the corresponding river flow in the study area, which presented the efficiency of 84% and 82%, respectively, according to the Nash-Sutcliffe statistic.

کلیدواژه‌ها [English]

  • Frank copula
  • Probabilistic analysis
  • Return period
  • Suspended Sediment load
Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and economics44(2), 182-198.
Bedford, T., & Cooke, R. (2001). Probabilistic risk analysis: foundations and methods. Cambridge University Press.
Bevacqua, E., Maraun, D., HobækHaff, I., Widmann, M., Vrac, M. (2017). Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy). Sciences, 21(6), 2701-2723.
Bezak, N., Rusjan, S., KramarFijavž, M., Mikoš, M., &Šraj, M. J. W. (2017). Estimation of suspended sediment loads using copula functions. Water, 9(8), 628.
Brunner, M. I., Furrer, R., & Favre, A. C. (2019). Modeling the spatial dependence of floods using the Fisher copula. Hydrology and Earth System Sciences, 23(1), 107-124.
Cooke, R. M., Kurowicka, D., & Wilson, K. (2015). Sampling, conditionalizing, counting, merging, searching regular vines. Journal of Multivariate Analysis, 138, 4-18.
Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics, Springer222.
Dastourani, M., & Nazeri Tahroudi, M. (2022). Toward coupling of groundwater drawdown and pumping time in a constant discharge. Applied Water Science12(4), 1-13.
Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research40(1).
Favre, A. C., Musy, A., &Morgenthaler, S. (2002). Two‐site modeling of rainfall based on the Neyman‐Scott process. Water Resources Research38(12), 43-1.
Gräler, B., van den Berg, M., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B., & Verhoest, N. (2013). Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17(4), 1281-1296.
Joe, H. (1997). Multivariate models and multivariate dependence concepts: Chapman and Hall/CRC.
Kao, S. C., &Govindaraju, R. S. (2007). A bivariate frequency analysis of extreme rainfall with implications for design. Journal of Geophysical Research: Atmospheres112(D13).
Khalili, K., Tahoudi, M. N., Mirabbasi, R., & Ahmadi, F. (2016). Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment30(4), 1205-1221.
Khan, F., Spöck, G., & Pilz, J. (2020). A novel approach for modelling pattern and spatial dependence structures between climate variables by combining mixture models with copula models. International Journal of Climatology, 40(2), 1049-1066.
Khashei, A., Shahidi, A., Nazeri-Tahroudi, M., & Ramezani, Y. (2022). Bivariate simulation and joint analysis of reference evapotranspiration using copula functions. Iranian Journal of Irrigation & Drainage16(3), 639-656.
Kurowicka, D., & Cooke, R. M. (2007). Sampling algorithms for generating joint uniform distributions using the vine-copula method. Computational statistics & data analysis51(6), 2889-2906.
Li, F., & Zheng, Q. (2016). Probabilistic modelling of flood events using the entropy copula. Advances in Water Resources97, 233-240.
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology10(3), 282-290.
Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2022). Application of Copula Functions for Bivariate Analysis of Rainfall and River Flow Deficiencies in the Siminehrood River Basin, Iran. Journal of Hydrologic Engineering27(11), 05022015.
Pham, M. T., Vernieuwe, H., De Baets, B., & Verhoest, N. (2018). A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis. Hydrology and Earth System Sciences22(2), 1263-1283.
PronoosSedighi, M., Ramezani, Y., Nazeri Tahroudi, M., & Taghian, M. (2022). Joint frequency analysis of river flow rate and suspended sediment load using conditional density of copula functions. Acta Geophysica, 1-13.
Ramezani, Y., Nazeri Tahroudi, M., & Ahmadi, F. (2019). Analyzing the droughts in Iran and its eastern neighboring countries using copula functions. IDŐJÁRÁS/QUARTERLY JOURNAL OF THE HUNGARIAN METEOROLOGICAL SERVICE, 123(4), 435-453.
Salvadori, G., & De Michele, C. (2007). On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering, 12(4), 369-380.
Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8, 229-231.
Wang, R., Zhao, C., Zhang, J., Guo, E., Li, D., Alu, S., & Dong, Z. (2019). Bivariate copula function-based spatial–temporal characteristics analysis of drought in Anhui Province, China. Meteorology and Atmospheric Physics131(5), 1341-1355.
Xiao, Y., Guo, S., Liu, P., & Fang, B. (2008). A new design flood hydrograph method based on bivariate joint distribution. IAHS Publications-Series of Proceedings and Reports319, 75-82.
Yue, S., Ouarda, T. B. M. J., & Bobée, B. (2001). A review of bivariate gamma distributions for hydrological application. Journal of Hydrology246(1-4), 1-18.
Zhang, D., Yan, M., & Tsopanakis, A. (2018). Financial stress relationships among Euro area countries: an R-vine copula approach. The European Journal of Finance24(17), 1587-1608.
Zhang, L., & Singh, V. (2006). Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11(2), 150-164.