بررسی تغییرات کیفی آب زیرزمینی آبخوان کارستی دشت الشتر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آب، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 استادیار، موسسه تحقیقات خاک و آب، بخش آبیاری و فیزیک خاک، کرج، ایران.

10.22034/arwe.2024.2019926.1007

چکیده

آب‌های زیرزمینی یکی از مهم‌ترین منابع آبی شیرین می­باشند. با افزایش جمعیت جهان و تقاضای آب برای کشاورزی و استفاده شهری، نیاز به منابع آب افزایش‌یافته است، بنابراین منابع آب زیرزمینی نقش مهمی را ایفا می‌کنند. در این مطالعه، دشت الشتر، با  اقلیم معتدل، به عنوان یک مطالعه موردی برای ارزیابی کیفیت آب‌های زیرزمینی منطقه با استفاده از داده‌های 17 چاه مشاهده‌ای بین سال‌های 1366 تا 1397 انتخاب شد. برای این منظور از اطلاعات چاه­های عمیق موجود در دشت که شامل: pH, K ,Cl ,EC ,TDS , Mg HCO3، Na، SAR ، So4، TH و Ca استفاده گردید. برای بررسی روند تغییرات از آزمون من کندال  استفاده شد. نتایج نشان داد که الگوی تغییرات پارامترهایpH, K Cl ,EC ,TDS و Mg دارای روندی افزایشی بوده­اند که این روند افزایشی در سطح اطمینان 95 % معنی­دار بوده است. از سوی دیگر، آماره­ی Z  پارامترهای HCO3، Na، SAR ، So4، TH و  Ca منفی بوده است، لذا روند تغییرات آن­ها به‌صورت کاهشی مشاهده گردید. برای اندازه‌گیری رابطه بین متغیرهای کیفیت آب زیرزمینی، ضریب همبستگی پیرسون برای ناحیه الشتر محاسبه شد  بالاترین همبستگی مثبت به‌ترتیب بین TDS و EC (‏R=0.98)‏، Na و SAR (‏R=0.93) ‏و HCO3 و TH (‏R=0.80)‏ بوده است. با استفاده از نرم‌افزار Arc GIS، نقشه پارامترهای کیفیت آب زیرزمینی در منطقه مورد مطالعه برای ارزیابی کیفیت تهیه شد. با توجه به نمودار ویلکاکس، همه­ی نمونه‌ها کیفیت آب جهت کشاورزی در رده­ی  C2S1 قرار می­گیرند که نشان‌دهنده آب زیرزمینی مناسب برای استفاده کشاورزی در منطقه می­باشد. نمودار شولر نشان می‌دهد که همه­ی نمونه‌های بررسی شده در کلاس خوبی برای نوشیدن قرار دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Changes in the Quality of Groundwater in the Karst Aquifer of Al-Shatar Plain

نویسندگان [English]

  • aryan heidari motlagh 1
  • shadman veysi 2
1 Ph. D. Student, Department of Water Engineering, Shahid Chamran University of Ahvaz.
2 Assistant Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

Groundwater is one of the most important sources of fresh water. With the increase in world population and water demand for agriculture and urban use, the need for water resources has risen, with groundwater playing a crucial role. In this study, Dasht aleShtar, a typical region of Iran with a temperate climate, was selected as a case study to evaluate the quality of groundwater in the region using data from 17 observation wells between 1366 and 1397. For this purpose, information from deep wells in the plain, including pH, K, Cl, EC, TDS, Mg, HCO3, Na, SAR, SO4, TH, and Ca, was utilized. The Mann-Kendall test was used to check the trend of changes. The results showed that the patterns of changes in pH, K, Cl, EC, TDS, and Mg parameters had an increasing trend, and this increase was significant at the 95% confidence level. On the other hand, because the Z-statistics of HCO3, Na, SAR, SO4, TH, and Ca parameters were negative, their changes are decreasing. However, the decreasing trend of Ca is significant at the 99% confidence level. To measure the relationship between groundwater quality variables, Pearson's correlation coefficient was calculated for the Al-Shatar area. The highest positive correlations were between TDS and EC (R=0.98), Na and SAR (R=0.93), and HCO3 and TH (R=0.93). The correlation between Ca and TH (R=0.80) is also noteworthy. Using ArcGIS software, a map of groundwater quality parameters was prepared in the study area for quality assessment. According to the water is suitable for agricultural use in the region. Schuler's diagram shows that all examined samples are in the good drinking class.

کلیدواژه‌ها [English]

  • Geographic information system
  • Groundwater
  • Hydrogeochemical
  • Wilcox diagram
 
Adimalla, N., & Li, P. (2019). Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Human and Ecological Risk Assessment: An International Journal, 25(1-2), 81-103.
Adimalla, N., & Qian, H. (2019). Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicology and environmental safety, 176, 153-161.
Adimalla, N., & Wu, J. (2019). Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Human and ecological risk assessment: an international journal, 25(1-2), 191-216.
Ahmed, N., Bodrud-Doza, M., Islam, S. D. U., Choudhry, M. A., Muhib, M. I., Zahid, A., ... & Bhuiyan, M. A. Q. (2019). Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Bangladesh. Acta Geochimica, 38, 440-455.
Alizadeh A. (2009). Drip irrigation (principles and application). Second edition, Astan Quds Razavi Publishing House, Imam Reza University. 493 p. [in Persian].
Ashraf, M. (2016, January). Managing water scarcity in Pakistan: moving beyond rhetoric. In Proceedings of AASSA-PAS regional workshop on challenges in water security to meet the growing food requirement. Pakistan Academy of Sciences, Islamabad (pp. 3-14).
Bayatvarkeshi, M., Fasihi, R. (2018). Monitoring of groundwater quality changes trend in four plains of Gilan province during a 12-year period. Ijhe, 10 (4):547-558. [In Persian].
Bazeli, J., Ghalehaskar, S., Morovati, M., Soleimani, H., Masoumi, S., Rahmani Sani, A., ... and Rastegar, A. (2022). Health risk assessment techniques to evaluate non-carcinogenic human health risk due to fluoride, nitrite and nitrate using Monte Carlo simulation and sensitivity analysis in Groundwater of Khaf County, Iran. International Journal of Environmental Analytical Chemistry, 102(8), 1793-1813.
Bhutiani, R., Kulkarni, D. B., Khanna, D. R., & Gautam, A. (2016). Water quality, pollution source apportionment and health risk assessment of heavy metals in groundwater of an industrial area in North India. Exposure and Health, 8, 3-18.
Bulut, O. F., Duru, B., Çakmak, Ö., Günhan, Ö., Dilek, F. B., & Yetis, U. (2020). Determination of groundwater threshold values: A methodological approach. Journal of Cleaner Production, 253, 120001.
Çelebi, A., Şengörür, B., & Kløve, B. (2015). Seasonal and spatial variations of metals in Melen Watershed Groundwater, Turkey. CLEAN–Soil, Air, Water, 43(5), 739-745.
Chen, J., Wu, H., Qian, H., & Li, X. (2018). Challenges and prospects of sustainable groundwater management in an agricultural plain along the Silk Road Economic Belt, north-west China. International journal of water resources development, 34(3), 354-368.
Daneshvar Vousoughi, F., Dinpashoh, Y., & Aalami, M. T. (2011). Effect of drought on groundwater level in the past two decades (Case study: Ardebil Plain). Water and Soil Science, 21(4), 165-179. [In Persian].
Dinpasho, Y., Fakhari Fard, A., Hassanpoor Eghdam, M. A., & Beheshtee Vayghan, V. (2015). Trend analysis of groundwater quality of Shabestar-Soofian Plain. Irrigation Sciences and Engineering, 38(1), 55-69. [In Persian].
Eghbalian, S., & Bahmani, O. (2020). Study of Local and Temporal Changes of Groundwater Quality Standards of Hamedan-Bahar Plain Using (GIS) over a 10 Year Period. Journal of Environmental Science and Technology, 22(3), 83-98. Doi: 10.22034/jest.2020.23995.3310[in Persian].
Foster, P. N. (1995). Industrial Arts/Technology Education as a Social Study: The Original Intent? Journal of Technology Education, 6(2), 4-18.
Gaus, I., Kinniburgh, D. G., Talbot, J. C., & Webster, R. (2003). Geostatistical analysis of arsenic concentration in groundwater in Bangladesh using disjunctive kriging. Environmental geology, 44, 939-948.
GU, H., Ma, F., Guo, J., Zhao, H., Lu, R., & Liu, G. (2018). A spatial mixing model to assess groundwater dynamics affected by mining in a coastal fractured aquifer, China. Mine Water and the Environment, 37(2), 405-420.
Haghizadeh, A., Kiani, A., & Kiani, M. (2017). Performance Evaluation of Geo-Statistical Methods to Estimate the Spatial Distribution of Snow Depth and Density in Mountainous Areas (Case Study: Gush Bala Watershed, Mashhad). HydrogeomorpHology, 4(12), 45-66. [In Persian].
He, S., Dong, D., Sun, C., Zhang, X., Zhang, L., Hua, X., & Guo, Z. (2019). Contaminants of emerging concern in a freeze-thaw river during the spring flood. Science of the total environment, 670, 576-584.
Heidari motlagh, A., nasrolahi, A., veysi, S., & Sharifipour, M. (2023). The influence of land surface temperature (LST) on estimated actual evapo transpiration. Iranian Journal of Soil and Water Research, 53(12), 2701-2720. Doi: 10.22059/ijswr.2022.351202.669396. [In Persian].
Hejam, S., Skhoshkho, Y., & Shams Al-Din Vrindi, R. (2008). Analyzing the trend of seasonal and annual rainfall variations of several selected stations in the center of Iran using non-parametric methods, geog. research, 40 (64), 168-157. [In Persian].
Hooshmand, A., Veysi, S., & Moradzadeh, M. (2012). Investigation of groundwater salinity resources using GIS (Case study: Gotvand-Aghili plain). Advances in Environmental Biology, 6(2), 629-635.
Imran, S., Anwaar, K., Bukhari, L. N., & Ashraf, M. (2016). Water Quality Status of Major Cities of Pakistan 2015-16. Pakistan Council of Research in Water Resources, Ministry of Science and Technology.
Karunanidhi, D., Aravinthasamy, P., Subramani, T., & Kumar, M. (2021). Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: a case study from Texvalley (Tiruppur region) of India. ChemospHere, 265, 129083.
Kaur, H., & Garg, P. (2019). Urban sustainability assessment tools: A review. Journal of cleaner production, 210, 146-158.
Kaur, L., Rishi, M. S., & Siddiqui, A. U. (2020). Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. Environmental Pollution, 259, 113711.
Kaur, L., Rishi, M. S., Sharma, S., Sharma, B., Lata, R., & Singh, G. (2019). Hydrogeochemical characterization of groundwater in alluvial plains of river Yamuna in northern India: An insight of controlling processes. Journal of King Saud university-science, 31(4), 1245-1253.
Khalili, A.S., & Bazrafshan, C. (2004). An Analysis of the Changes in Annual, Seasonal, and Monthly Rainings in Five Iranian Old Stations in the Past One Seventeen and Sixteen Years, Desert, 9(1), 25-25. [in Persian].
Khanduzi, F., Parizanganeh, A., & Zamani, A. (2015). Application of multivariate statistics and geostatistical techniques to identify the spatial variability of heavy metals in groundwater resources. Caspian Journal of Environmental Sciences, 13(4), 333-347.
Kumar, M., Ramanathan, A. L., Mukherjee, A., Sawlani, R., & Ranjan, S. (2019). Delineating sources of groundwater recharge and carbon in Holocene aquifers of the central Gangetic basin using stable isotopic signatures. Isotopes in Environmental and Health Studies, 55(3), 254-271.
Li, P., & Qian, H. (2018). Water resources research to support a sustainable China. International Journal of Water Resources Development, 34(3), 327-336.
Li, P., Tian, R., Xue, C., & Wu, J. (2017). Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environmental Science and Pollution Research, 24, 13224-13234.
Machiwal, D., & Jha, M. K. (2015). Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies, 4, 80-110.
Magesh, N. S., Krishnakumar, S., Chandrasekar, N., & Soundranayagam, J. P. (2013). Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arabian Journal of Geosciences, 6, 4179-4189.
Mallick, J., Singh, C. K., AlMesfer, M. K., Kumar, A., Khan, R. A., Islam, S., & Rahman, A. (2018). Hydro-geochemical assessment of groundwater quality in Aseer Region, Saudi Arabia. Water, 10(12), 1847.
Mohaghegh, A., Valikhan Anaraki, M., & Farzin, S. (2020). Modeling of qualitative parameters (Electrical conductivity and total dissolved solids) of Karun River at Mollasani, Ahvaz and Farsiat stations using data mining methods. Iranian Journal of Health and Environment, 13(1), 103-122. [In Persian].
Panahi, G., Eskafi, M. H., Rahimi, H., Faridhosseini, A., & Tang, X. (2021). PHysical–chemical evaluation of groundwater quality in semi-arid areas: case study—Sabzevar plain, Iran. Sustainable Water Resources Management, 7, 1-15.
Patil, V. T., & Patil, P. R. (2011). Groundwater quality of open wells and tube wells around Amalner town of Jalgaon district, Maharashtra, India. Journal of Chemistry, 8, 53-58.
Qasemi, M., Farhang, M., Morovati, M., Mahmoudi, M., Ebrahimi, S., Abedi, A., ... & Ghaderpoury, A. (2022). Investigation of potential human health risks from fluoride and nitrate via water consumption in Sabzevar, Iran. International journal of environmental analytical chemistry, 102(2), 307-318.
Qishlaqi, A., Kordian, S., & Parsaie, A. (2017). Hydrochemical evaluation of river water quality—a case study. Applied Water Science, 7, 2337-2342.
Rafei Sharif Abad, J., & Zehtabian, G. (2017). Tracking Temporal and Spatial Changes in groundwater Quality for Potable and Agricultural Purposes (Case Study: Yazd, Ardakan Plain). Desert Management, 5(9), 107-119. Doi: 10.22034/jdmal.2017.27853. [In Persian].
Rasheed, H., Iqbal, N., Ashraf, M., & ul Hasan, F. (2022). Groundwater quality and availability assessment: A case study of District Jhelum in the Upper Indus, Pakistan. Environmental Advances, 7, 100148.
Rashid, A., Farooqi, A., GAO, X., Zahir, S., Noor, S., & Khattak, J. A. (2020). Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. ChemospHere, 243, 125409.
Ray, R. K., Syed, T. H., Saha, D., Sarkar, B. C., & Patre, A. K. (2017). Assessment of village-wise groundwater draft for irrigation: a field-based study in hard-rock aquifers of central India. Hydrogeology Journal, 25(8), 2513-2525.
Razmkhah, H., Mohammadi, E., Rostami Ravary, A., & Fararoui, A. (2022). Salinity Assessment and Ground Water Quality Mapping Using Principle Component Analysis, Case study: Khafr Plain. Water Resources Engineering, 15(54), 1-18. Doi: 10.30495/wej.2021.26939.2287[in Persian].
Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of environmental management, 185, 70-78.
Salari, M. (2024). Investigating groundwater quality using water quality indicators for drinking, agriculture and industry (Case study: Shiraz plain). Journal of Environmental Science Studies, 8(4), 7574-7586. Doi: 10.22034/jess.2023.380846.1953. [In Persian].
Selvam, S., Manimaran, G., & Sivasubramanian, P. (2013). Hydrochemical characteristics and GIS-based assessment of groundwater quality in the coastal aquifers of Tuticorin Corporation, Tamilnadu, India. Applied Water Science, 3, 145-159.
Singh, C. K., Shashtri, S., & Mukherjee, S. (2011). Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environmental Earth Sciences, 62, 1387-1405.
Sunkari, E. D., Abu, M., Bayowobie, P. S., & Dokuz, U. E. (2019). Hydrogeochemical appraisal of groundwater quality in the Ga west municipality, Ghana: implication for domestic and irrigation purposes. Groundwater for Sustainable Development, 8, 501-511.
Tahir, M. A., Rasheed, H., & Imran, S. (2010). Water quality status in rural areas of Pakistan. Pakistan Council of Research in Water Resources.
Torabi Poudeh, H., & Hamezadeh, P. (2018). Evaluate the Water Quality and Trend of changes in quality parameters of ‎Kashkan basin. Iranian journal of Ecohydrology, 5(1), 23-36. Doi: 10.22059/ije.2017.228466.490. [In Persian].
Tyagi, S., & Sarma, K. (2020). Qualitative assessment, geochemical characterization and corrosion-scaling potential of groundwater resources in Ghaziabad district of Uttar Pradesh, India. Groundwater for sustainable development, 10, 100370.
Ukah, B. U., Egbueri, J. C., Unigwe, C. O., & Ubido, O. E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources, 3, 291-303.
Varol, M., & Tokatlı, C. (2022). Seasonal variations of toxic metal (loid) s in groundwater collected from an intensive agricultural area in northwestern Turkey and associated health risk assessment. Environmental Research, 204, 111922.
Wang, X., Zheng, W., Tian, W., GAO, Y., Wang, X., Tian, Y. ... & Zhang, X. (2022). Groundwater hydrogeochemical characterization and quality assessment based on integrated weight matter-element extension analysis in Ningxia, upper Yellow River, and northwest China. Ecological Indicators, 135, 108525.
Wu, J., Zhang, Y., & Zhou, H. (2020). Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos's basin of northwest China. Geochemistry, 80(4), 125607.
Xiao, J., Wang, L., Chai, N., Liu, T., Jin, Z., & Rinklebe, J. (2021). Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau. Environmental Pollution, 278, 116930.
Yonesi, H., Torabipoudeh, H., Shahinejad, B., Arshia, A., & mirzapour, H. (2020). Groundwater quality trend analysis and zoning using TFPW-MK and GIS (Case Study: Najaf Abad Aquifer). Journal of Water and Soil Resources Conservation, 9(3), 143-156.
Zanganeh asadi, M. A., Kolivand, T., & Jokar Sarhangi, E. (2021). Hazardous zoning of Aleshtar plain karst aquifer with cap model. PHysical GeograpHy Quarterly, 14(52), 83-98. [In Persian].
Zhao, C., Zhang, X., Fang, X., Zhang, N., Xu, X., Li, L. ... & Xia, Y. (2022). Characterization of drinking groundwater quality in rural areas of Inner Mongolia and assessment of human health risks. Ecotoxicology and Environmental Safety, 234, 113360.